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We consider the setting in which we want to study the relationship between D∗, a po-
tentially misclassified electronic health record-derived binary phenotype, and G, genetic
information. Common practice is to study this relationship by fitting a logistic regression
(or in some cases, linear regression, which we will not consider here) for D∗ given G and
possibly other covariates Z on the sampled dataset. This approach implicitly assumes that
D∗ = D, where D is the true disease status. Additionally, in order to generalize to the
general population, we make implicit assumptions on the sampling mechanism.

When we have misclassification of the phenotype with respect to the true disease status
and/or when sampling depends on the underlying disease status, this standard approach
may produce biased estimates for the quantity of interest. The goal of SAMBA-EHR is to
enable users to understand the degree of bias that may be introduced by the standard anal-
ysis approach. SAMBA-EHR allows users to perform sensitivity analysis after the primary
analysis to explore the robustness of modeling results to different underlying sampling and
misclassification mechanisms. In this document, we provide a short example of how this tool
can be used.

1 Modeling Framework

The home page of the app provides information about the modeling framework and assump-
tions. Using notation on this page, θG is the quantity we are really interested in, and it
represents the log-odds ratio relationship between D, the true lifetime disease status, and G.
G can be a continuous variable such as a polygenic risk score (assumed to be mean-centered
in the sample), or G can represent a single genetic locus or SNP coded 0/1/2 for the number
of minor alleles.

Z represents the covariates adjusted for in the target model. We assume these covariates
are mean-centered. We also make some assumptions regarding the relationships between
X, Y,W , and G. These assumptions can be strong in some cases, and they can be weakened
by including predictors contained in W , and X, and/or Y in Z. In other words, we only
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need these independence assumptions when our simple regression model does not adjust for
some of these factors.

2 Characterizing the Bias

While we are really interested in the Z-adjusted relationship between D and G in the general
population, in practice we fit a model for misclassified phenotype D∗ given G and Z on the
sampled subjects. We then interpret the corresponding log-OR for G as θG. However, the
resulting estimate of θG may be biased.

We can explore the potential degree of bias by clicking on the “Bias of Simple Anal-
ysis” tab. We can use the various sliders and drop-down menus on the left-hand side of
the page to select scenarios of interest. For example, suppose G is a SNP with a popula-
tion minor allele frequency (MAF) about about 12%, and we believe the true log-odds ratio
of G is roughly 0.5. The sampling ratio represents the ratio of the average probability of
being sampled in the diseased and non-diseased subjects. A sampling ratio of 1 indicates
that sampling is unrelated to the true disease status. Figure 1 shows the expected bias for
different values of the false positive rate (1-specificity) and the sampling ratio.

Suppose the disease of interest is breast cancer, which has a lifetime prevalence rate of
about 12% in the US. The blue lines present the degree of bias we expect in the intercept and
log-odds ratio of G if we perform the simple analysis in this setting. Suppose we assume that
we have a false positive rate of zero. This may be reasonable for a cancer phenotype, since
the consequences of breast cancer diagnosis in terms of treatment and patient health can be
severe. Suppose the sampling ratio equals 1. In this setting, the bias for the log-odds ratio of
G increases as sensitivity decreases, but even extremely low sensitivity produces what might
be viewed as a small absolute bias in estimating θG. Instead, suppose the sampling ratio is
5, so diseased subjects are 5 times more likely to be sampled on average than non-diseased
subjects. Even with perfect sensitivity, the intercept estimate from the simple analysis is
expected to be biased. As before, we see increased bias in estimating the log-odds ratio of
G for decreased sensitivity, but the absolute bias is larger when the sampling ratio is 5 than
when the true sampling ratio is 1. When sampling strongly depends on the underlying dis-
ease status, a lower sensitivity value can sometimes produce substantial bias in estimating θG.

We can use this tool to explore how the degree of this bias depends on various model
factors. We encourage you to play around and develop an intuition for when we expect large
biases and when biases are expected to be much smaller. In particular, when we vary the
false positive rates, the biases can have some very interesting properties. When we expect
less bias, we may be less concerned about biases in the standard analysis approach.
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Figure 1: Bias with sampling ratio of 1

(a) Sampling Ratio = 1, Perfect Specificity

(b) Sampling Ratio = 1, Specificity = 0.99

(c) Sampling Ratio = 5, Perfect Specificity
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3 Sensitivity Exploration after Primary Analysis

One question of interest is whether we need to “worry about” the misclassification and
disease-dependent sampling in a given analysis. Restated, would accounting for these mech-
anisms give different results? If so, how different? The third tab of this online tool was
developed to guide these explorations.

Suppose we believe that the sampling ratio might be between 1 and 5 based on our
prior knowledge. Suppose we are again studying breast cancer, which has a population
lifetime disease prevalence in the US around 12%. Suppose we are perform the “simple”
standard analysis for a particular SNP with a minor allele frequency of 10%, and suppose
we had an estimated log-odds ratio of 0.20 from this standard analysis. What are plausible
values for θG? We can plug in the point estimate and both ends of the confidence intervals to
see what types of values of θG could produce the observed estimate under different sensitivity
levels. Figure 2 shows predicted values of θG for the standard analysis point estimate of
0.20. Each boxplot corresponds to predictions for sampling ratio values between 1 and 5.

If we believe our sensitivity values are pretty high (e.g. greater than 0.7) and we have
perfect specificity, we may not have too much cause to worry about bias induced by ignoring
misclassification and disease-dependent sampling since the absolute bias is predicted to be
fairly small. We may worry more if the sensitivity could be very low or if we have a lot of
false positives.

The degree to which we worry about bias in a particular analysis setting will depend
on the goals of the analysis, but this tool can help provide a first step in understanding
the scale of the bias and what factors might impact this bias. We hope that this type of
sensitivity analysis can be incorporated in standard EHR-based association analyses as a
way to explore the robustness of results to violations of the common implicit assumptions of
no disease-dependent sampling and no phenotype misclassification.
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Figure 2: Predicted θG given simple standard analysis results

(a) Perfect Specificity

(b) Specificity = 0.95
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